Zero-Mean Scaling¶
Global Algorithm - Multi-Dimensional algorithm
Zero-Mean Scaling algorithm is a algorithm of normalization which uses the mean and standard deviation of the data set to normalize each data point. The basic formulas are stated as follows:
ˆYi=(Yi−μ)σ
for a one-dimensional data vector,
ˆYi,j=(Yi,j−μ)σ
for a two-dimensional data matrix,
ˆYi,j,k=(Yi,j,k−μ)σ
for a three-dimensional data matrix, where Y represents the input data and i,j,k represent the corresponding indices for the data entry considered. μ is the mean, and σ is the standard deviation of the input data.
Input Parameters
Parameter | Type | Constraint | Description | Remarks |
---|---|---|---|---|
Y | Y∈RN1,RN1×N2, or RN1×N2×N3,… | N1,N2,N3∈N | ||
μ | μ∈R | Mean value of Y | ||
σ | σ∈R | Standard deviation of Y |
Output Parameters
Parameter | Type | Constraint | Description | Remarks |
---|---|---|---|---|
ˆY | ˆY∈(−1,1)N1,(−1,1)N1×N2, or (−1,1)N1×N2×N3,… | N1,N2,N3∈N |
Single Steps using the Algorithm
References
- J. Han, M. Kamber and J. Pei, Data Mining - Concepts and Techniques, 3rd ed., Amsterdam: Morgan Kaufmann Publishers, 2012.