Zero-Mean Scaling

Global Algorithm - Multi-Dimensional algorithm

Zero-Mean Scaling algorithm is a algorithm of normalization which uses the mean and standard deviation of the data set to normalize each data point. The basic formulas are stated as follows:

ˆYi=(Yiμ)σ

for a one-dimensional data vector,

ˆYi,j=(Yi,jμ)σ

for a two-dimensional data matrix,

ˆYi,j,k=(Yi,j,kμ)σ

for a three-dimensional data matrix, where Y represents the input data and i,j,k represent the corresponding indices for the data entry considered. μ is the mean, and σ is the standard deviation of the input data.

Input Parameters

Parameter Type Constraint Description Remarks
Y YRN1,RN1×N2, or RN1×N2×N3, N1,N2,N3N    
μ μR   Mean value of Y  
σ σR   Standard deviation of Y  

Output Parameters

Parameter Type Constraint Description Remarks
ˆY ˆY(1,1)N1,(1,1)N1×N2, or (1,1)N1×N2×N3, N1,N2,N3N    

Single Steps using the Algorithm

References

  • J. Han, M. Kamber and J. Pei, Data Mining - Concepts and Techniques, 3rd ed., Amsterdam: Morgan Kaufmann Publishers, 2012.