Unitnorm Scaling¶
Global Algorithm - Multi-Dimensional algorithm
Unitnorm Scaling algorithm uses the following formula to normalize data:
ˆYi=Yi‖
for a one-dimensional data vector,
\hat{Y}_{i,j} = \frac{Y_{i,j}}{\|Y\|_2}
for a two-dimensional data matrix,
\hat{Y}_{i,j,k} = \frac{Y_{i,j,k}}{\|Y\|_2}
for a three-dimensional data matrix, where Y represents the input data and i, j, k represent the corresponding indices for the data entry considered. ||\cdot||_2 represents the Euclidean norm.
Input Parameters
Parameter | Type | Constraint | Description | Remarks |
---|---|---|---|---|
Y | Y \in \mathbb R^{N_1}, \mathbb R^{N_1 \times N_2}, \text{ or } \mathbb R^{N_1 \times N_2 \times N_3}, \ldots | N_1, N_2, N_3 \in \mathbb{N} |
Output Parameters
Parameter | Type | Constraint | Description | Remarks |
---|---|---|---|---|
\hat{Y} | \hat{Y} \in (-1,1)^{N_1}, (-1,1)^{N_1 \times N_2}, \text{ or } (-1,1)^{N_1 \times N_2 \times N_3}, \ldots | N_1, N_2, N_3 \in \mathbb{N} |
Single Steps using the Algorithm