Unitnorm ScalingΒΆ
Global Algorithm - Multi-Dimensional algorithm
Unitnorm Scaling algorithm uses the following formula to normalize data:
\[\hat{Y}_i = \frac{Y_i}{\|Y\|_2}\]
for a one-dimensional data vector,
\[\hat{Y}_{i,j} = \frac{Y_{i,j}}{\|Y\|_2}\]
for a two-dimensional data matrix,
\[\hat{Y}_{i,j,k} = \frac{Y_{i,j,k}}{\|Y\|_2}\]
for a three-dimensional data matrix, where \(Y\) represents the input data and \(i, j, k\) represent the corresponding indices for the data entry considered. \(||\cdot||_2\) represents the Euclidean norm.
Input Parameters
Parameter | Type | Constraint | Description | Remarks |
---|---|---|---|---|
\(Y\) | \(Y \in \mathbb R^{N_1}, \mathbb R^{N_1 \times N_2}, \text{ or } \mathbb R^{N_1 \times N_2 \times N_3}, \ldots\) | \(N_1, N_2, N_3 \in \mathbb{N}\) |
Output Parameters
Parameter | Type | Constraint | Description | Remarks |
---|---|---|---|---|
\(\hat{Y}\) | \(\hat{Y} \in (-1,1)^{N_1}, (-1,1)^{N_1 \times N_2}, \text{ or } (-1,1)^{N_1 \times N_2 \times N_3}, \ldots\) | \(N_1, N_2, N_3 \in \mathbb{N}\) |
Single Steps using the Algorithm