Polynomial Regression

Global Algorithm - One-Dimensional Algorithm

Polynomial Regression algorithm is a generalization of the linear regression algorithm that aims to find parameters p1,p2,,pn for a polynomial model of degree n, i.e. y=p0+p1t++pntn, that best fits N data points. The task is equivalent to solve the following systems of linear equations

Ap=[1t1t21tn11t2t22tn21tNt2NtnN][p0p1pn]=[y1y2yN]=Y.

The method of least squares is the most common method for finding the fitted parameters. If A is of full column rank, the least squares solution is given by

p=(ATA)1ATY.

Input Parameters

Parameter Type Constraint Description Remarks
[ti] [ti]RN NN    
Y YRN NN Input data vector of length N  
n nN      

Output Parameters

Parameter Type Constraint Description Remarks
p pRn      
ˆY ˆYRN NN Output data vector of length N  

Tool Support

Single Steps using the Algorithm

References

  • R.C. Aster, B. Borchers, C.H. Thurber, Parameter Estimation and Inverse Problems, Academic Press, 2005.