Polynomial Regression¶
Global Algorithm - One-Dimensional Algorithm
Polynomial Regression algorithm is a generalization of the linear regression algorithm that aims to find parameters p1,p2,…,pn for a polynomial model of degree n, i.e. y=p0+p1⋅t+…+pn⋅tn, that best fits N data points. The task is equivalent to solve the following systems of linear equations
Ap=[1t1t21⋯tn11t2t22⋯tn2⋮⋮⋮⋮⋮1tNt2N⋯tnN][p0p1⋮pn]=[y1y2⋮yN]=Y.
The method of least squares is the most common method for finding the fitted parameters. If A is of full column rank, the least squares solution is given by
p=(ATA)−1ATY.
Input Parameters
Parameter | Type | Constraint | Description | Remarks |
---|---|---|---|---|
[ti] | [ti]∈RN | N∈N | ||
Y | Y∈RN | N∈N | Input data vector of length N | |
n | n∈N |
Output Parameters
Parameter | Type | Constraint | Description | Remarks |
---|---|---|---|---|
p | p∈Rn | |||
ˆY | ˆY∈RN | N∈N | Output data vector of length N |
Tool Support
Single Steps using the Algorithm
References
- R.C. Aster, B. Borchers, C.H. Thurber, Parameter Estimation and Inverse Problems, Academic Press, 2005.