One-sided MedianΒΆ
Local Algorithm - One-Dimensional Algorithm
One-sided Median algorithm computes the median
\[m_n^Y = \text{Median}\{Y_{n-2k}, \ldots, Y_{n-1}\}\]
and the median
\[m_n^Z = \text{Median}\{Z_{n-2k}, \ldots, Z_{n-1}\}\]
with
\[Z_n = Y_n - Y_{n-1}.\]
\(2k\) is the size of the neighborhood window. Defining
\[\hat{m}_n = m_n^Y + k m_n^Z \, \text{,}\]
\(Y_n\) is treated as a value outside the region of interest if \(|Y_n - \hat{m}_n| \geq \tau\).
Input Parameters
Parameter | Type | Constraint | Description | Remarks |
---|---|---|---|---|
\(Y\) | \(Y \in \mathbb R^N\) | \(N \in \mathbb{N}\) | Input data sequence of length \(N\) | |
\(\tau\) | \(\tau \in \mathbb R^+\) | User-specified threshold |
Output Parameters
Parameter | Type | Constraint | Description | Remarks |
---|---|---|---|---|
\(\hat{Y}\) | \(\hat{Y} \in \mathbb R^N\) | Values in the \(Y\) list which are outside the region of interest are marked |
Single Steps using the Algorithm
References
- S. Basu, M. Meckesheimer, Automatic outlier detection for time series: an application to sensor data, Knowledge and Information Systems, vol. 11, Issue 2, pp 137-154, 2007.