Holt-Winters Double Exponential SmoothingΒΆ
Local Algorithm - One-Dimensional Algorithm
Holt-Winters Double Exponential Smoothing algorithm is an improved version of the Single Exponential Smoothing algorithm. It works well when there is a a trend in the input data. The basic formulas are stated as follows:
\[(1) \quad s_1 = Y_0 \, \text{,}\]
,
\[(2) \quad b_1 = Y_1-Y_0 \, \text{,}\]
\[(3) \quad s_t = \alpha Y_t + (1 - \alpha)(s_{t-1} + b_{t-1}), \quad t > 1 \, \text{,}\]
\[(4) \quad b_t = \beta (s_t - s_{t-1}) + (1 - \beta) b_{t-1}, \quad t > 1\, \text{,}\]
\[(5) \quad \hat{Y}_{t+m} = s_t + m b_t \, \text{,}\]
where \(Y\) is the data sequence beginning at time \(t = 0\) and \(\hat{Y}_{t+m}\) is the smoothed forecast for time \(t + m\).
Input Parameters
Parameter | Type | Constraint | Description | Remarks |
---|---|---|---|---|
\(Y\) | \(Y \in \mathbb R^N\) | \(N \in \mathbb{N}\) | Input data sequence of length \(N\) | |
\(\alpha\) | \(\alpha \in \mathbb R\) | \(0 \leq \alpha \leq 1\) | ||
\(\beta\) | \(\beta \in \mathbb R\) | \(0 \leq \beta \leq 1\) |
Output Parameters
Parameter | Type | Constraint | Description | Remarks |
---|---|---|---|---|
\(\hat{Y}\) | \(\hat{Y} \in \mathbb R^N\) |
Tool Support
Single Steps using the Algorithm
References
NIST/SEMATECH e-Handbook of Statistical Methods