Chi-Squared TestΒΆ
Global Algorithm - Multi-Dimensional algorithm
Chi-Squared Test algorithm is used to analyze a correlation relationship between two attributes. The \(\chi^2\)-value for attributes \(A\) and \(B\) is computed as:
\[\chi^2 = \sum_{i=1}^{N} \sum_{j=1}^{M} \frac{(o_{ij} - e_{ij})^2}{e_{ij}} \, \text{,}\]
where \(o_{ij}\) is the observed frequency of the joint event of pair \((A_i, B_j)\) and \(e_{ij}\) is the corresponding expected frequency.
Input Parameters
Parameter | Type | Constraint | Description | Remarks |
---|---|---|---|---|
\(A\) | \(A = \{a_i\}, i = 1, 2, \ldots, N\) | \(N \in \mathbb{N}\) | ||
\(B\) | \(B = \{b_i\}, i = 1, 2, \ldots, M\) | \(M \in \mathbb{N}\) | ||
\((e_{ij})\) | \((e_{ij}) \in \mathbb N^{N \times M}\) |
Output Parameters
Parameter | Type | Constraint | Description | Remarks |
---|---|---|---|---|
\(\chi^2\) | \(\chi^2 \in \mathbb R\) |
Tool Support
Single Steps using the Algorithm
- Data Discretization with Chi-Squared Test
- Outlier Detection with Chi-Squared Test
- Redundancy Detection with Chi-Squared Test
References
- P.E. Greenwood, M.S. Nikulin, A guide to chi-squared testing, Wiley, New York, 1996.