Chi-Squared Test¶
Global Algorithm - Multi-Dimensional algorithm
Chi-Squared Test algorithm is used to analyze a correlation relationship between two attributes. The χ2-value for attributes A and B is computed as:
χ2=N∑i=1M∑j=1(oij−eij)2eij,
where oij is the observed frequency of the joint event of pair (Ai,Bj) and eij is the corresponding expected frequency.
Input Parameters
Parameter | Type | Constraint | Description | Remarks |
---|---|---|---|---|
A | A={ai},i=1,2,…,N | N∈N | ||
B | B={bi},i=1,2,…,M | M∈N | ||
(eij) | (eij)∈NN×M |
Output Parameters
Parameter | Type | Constraint | Description | Remarks |
---|---|---|---|---|
χ2 | χ2∈R |
Tool Support
Single Steps using the Algorithm
- Data Discretization with Chi-Squared Test
- Outlier Detection with Chi-Squared Test
- Redundancy Detection with Chi-Squared Test
References
- P.E. Greenwood, M.S. Nikulin, A guide to chi-squared testing, Wiley, New York, 1996.