Backward Moving AverageΒΆ
Local Algorithm - One-Dimensional Algorithm
Backward Moving Average algorithm replaces each original data value by the average over its neighbor values. The choice of filter width has a great impact on the final results. The basic formula (for filter width \(L = M+1\)) is stated as follows:
\[\hat{x}[n] = \frac{1}{M+1} \sum_{k=-M}^0 x[n+k] \, \text{,}\]
where \(x[n]\) and \(\hat{x}[n]\) denote raw data and processed data, respectively.
Input Parameters
Parameter | Type | Constraint | Description | Remarks |
---|---|---|---|---|
\(x[n]\) | \(x[n] \in \mathbb R^N\) | \(N \in \mathbb{N}\) | Input data sequence of length \(N\) | The algorithm assumes that input data contains no outliers and improper values such as ‘nan’, ‘inf’, ‘null’. |
\(L\) | \(L \in \mathbb N\) | \(L = M + 1, \quad M \in \mathbb{N}\) |
Output Parameters
Parameter | Type | Constraint | Description | Remarks |
---|---|---|---|---|
\(\hat{x}[n]\) | \(\hat{x}[n] \in \mathbb R^N\) | \(N \in \mathbb{N}\) | Output data sequence of length \(N\) |
Tool Support
Single Steps using the Algorithm
References
- B. Jaehne, Digitale Bildverarbeitung, 5th ed. Berlin: Springer Verlag, 2002.
- K.D. Kammeyer and K. Kroschel, Digitale Signalverarbeitung, 5th ed. Stuttgart: Teubner, 2002.