Box-Cox TransformationΒΆ
Global Algorithm - One-Dimensional Algorithm
Box-Cox Transformation algorithm is a useful data pre-processing technique. It can be used to make the non-normally distributed data normal and stabilise variance of the time series data that is non-stationary in variance.
Input Parameters
Parameter | Type | Constraint | Description | Remarks |
---|---|---|---|---|
\(Y\) | \(Y \in \mathbb R^N\) | \(N \in \mathbb{N}, Y > 0\) | Input data vector of length \(N\) |
Output Parameters
Parameter | Type | Constraint | Description | Remarks |
---|---|---|---|---|
\(\hat{Y}\) | \(\hat{Y} \in \mathbb R^N\) | \(N \in \mathbb{N}\) | Data vector of length \(N\) that has approximately normal distribution | |
\(\lambda\) | \(\lambda \in \mathbb R\) | Estimated transformation parameter | In some cases, it may be given by the user as an input parameter |
Tool Support
Single Steps using the Algorithm
- Reducing Data Nonnormality with Box-Cox Transformation
- Stabilizing Variance with Box-Cox Transformation
References
R.M. Sakia, The Box-Cox transformation technique: a review, The Statistician, vol. 41, pp. 169-178, 1992.