Box-Cox Transformation¶
Global Algorithm - One-Dimensional Algorithm
Box-Cox Transformation algorithm is a useful data pre-processing technique. It can be used to make the non-normally distributed data normal and stabilise variance of the time series data that is non-stationary in variance.
Input Parameters
Parameter | Type | Constraint | Description | Remarks |
---|---|---|---|---|
Y | Y∈RN | N∈N,Y>0 | Input data vector of length N |
Output Parameters
Parameter | Type | Constraint | Description | Remarks |
---|---|---|---|---|
ˆY | ˆY∈RN | N∈N | Data vector of length N that has approximately normal distribution | |
λ | λ∈R | Estimated transformation parameter | In some cases, it may be given by the user as an input parameter |
Tool Support
Single Steps using the Algorithm
- Reducing Data Nonnormality with Box-Cox Transformation
- Stabilizing Variance with Box-Cox Transformation
References
R.M. Sakia, The Box-Cox transformation technique: a review, The Statistician, vol. 41, pp. 169-178, 1992.