Weighted Backward Moving AverageΒΆ
Local Algorithm - One-Dimensional Algorithm
Weighted Backward Moving Average algorithm is based on the Backward Moving Average algorithm. Differently, varying weights are assigned to the values within the filter width. The basic formula (for filter width \(L = M+1\)) is stated as follows:
\[\hat{x}[n] = \frac{1}{M+1} \sum_{k=-M}^0 w[k] x[n+k] \, \text{,}\]
where \(x[n]\), \(\hat{x}[n]\) and \(w[k]\) denote raw data, processed data and weights, respectively.
Input Parameters
Parameter | Type | Constraint | Description | Remarks |
---|---|---|---|---|
\(x[n]\) | \(x[n] \in \mathbb R^N\) | \(N \in \mathbb{N}\) | Input data sequence of length \(N\) | The algorithm assumes that input data contains no outliers and improper values such as ‘nan’, ‘inf’, ‘null’. |
\(L\) | \(L \in \mathbb N\) | \(L = M + 1, \quad M \in \mathbb{N}\) | ||
\(w[k]\) | \(w[k] \in \mathbb{R}^L\) | \(w[k] \geq 0, \quad \sum w[k] = 1\) | Weighting vector of of length \(L\) |
Output Parameters
Parameter | Type | Constraint | Description | Remarks |
---|---|---|---|---|
\(\hat{x}[n]\) | \(\hat{x}[n] \in \mathbb R^N\) | \(N \in \mathbb{N}\) | Output data sequence of length \(N\) |
Tool Support
Single Steps using the Algorithm