Backward DifferenceΒΆ
Local Algorithm - One-Dimensional Algorithm
The basic formula for computing the Backward Difference derivative at the point \(t_i\) is stated as follows:
\[Y(t_i)' = \frac{Y(t_i) - Y(t_i-h_{i-1})}{h_{i-1}}\]
where \(Y(t_i)\) is the function value at time point \(t_i\), \(Y'(t_i)\) is the first derivative at time point \(t_i\), \(h_{i-1}\) is the step size between the point \(t_i\) and the preceding time point.
Input Parameters
Parameter | Type | Constraint | Description | Remarks |
---|---|---|---|---|
\(Y\) | A continuous function or a data vector | |||
\(h_{i-1}\) | \(h_{i-1} \in \mathbb{R}^+\) |
Output Parameters
Parameter | Type | Constraint | Description | Remarks |
---|---|---|---|---|
\(\hat{Y}\) | A data vector | First derivative of \(Y\) with respect to \(t\) |
Single Steps using the Algorithm
References
- R. L. Burden and J. D. Faires, Numerical Analysis, Fifth Edition, PWS Publishing Co. Boston, MA, 1993.