Backward Difference¶
Local Algorithm - One-Dimensional Algorithm
The basic formula for computing the Backward Difference derivative at the point ti is stated as follows:
Y(ti)′=Y(ti)−Y(ti−hi−1)hi−1
where Y(ti) is the function value at time point ti, Y′(ti) is the first derivative at time point ti, hi−1 is the step size between the point ti and the preceding time point.
Input Parameters
Parameter | Type | Constraint | Description | Remarks |
---|---|---|---|---|
Y | A continuous function or a data vector | |||
hi−1 | hi−1∈R+ |
Output Parameters
Parameter | Type | Constraint | Description | Remarks |
---|---|---|---|---|
ˆY | A data vector | First derivative of Y with respect to t |
Single Steps using the Algorithm
References
- R. L. Burden and J. D. Faires, Numerical Analysis, Fifth Edition, PWS Publishing Co. Boston, MA, 1993.