K-Means Clustering

Global Algorithm - One-Dimensional Algorithm

K-Means Clustering algorithm is a simple unsupervised learning algorithm used to solve clustering problems. By assuming k clusters, it minimizes the sum of distances (points to cluster centroids) through iteration.

For details refer to the online tutorial http://www-2.cs.cmu.edu/~awm/tutorials/kmeans.html.

Input Parameters

Parameter Type Constraint Description Remarks
Y YRN NN Input data of size N  
k kN k<N Specified number of clusters  

Output Parameters

Parameter Type Constraint Description Remarks
ˆY ˆYRk   A vector of k cluster centroid locations  

Tool Support

Single Steps using the Algorithm

References

  • J.B. MacQueen, Some Methods for classification and Analysis of Multivariate Observations, Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, University of California Press, vol. 1, pp. 281-297, 1967.