Min-Max Scaling¶
Global Algorithm - Multi-Dimensional algorithm
The basic formula of Min-Max Scaling algorithm is stated as follows:
ˆYi=Yi−min(Y)max(Y)−min(Y)⋅(maxnew−minnew)+minnew
for a one-dimensional data vector,
ˆYi,j=Yi,j−min(Y)max(Y)−min(Y)⋅(maxnew−minnew)+minnew
for a two-dimensional data matrix, and
ˆYi,j,k=Yi,j,k−min(Y)max(Y)−min(Y)⋅(maxnew−minnew)+minnew
for a three-dimensional data matrix, where Y represents the input data and i,j,k represent the corresponding indices for the data entry considered.
Input Parameters
Parameter | Type | Constraint | Description | Remarks |
---|---|---|---|---|
Y | Y∈RN1,RN1×N2, or RN1×N2×N3,… | N1,N2,N3∈N | ||
minnew | minnew∈R | minnew≤maxnew | ||
maxnew | maxnew∈R | minnew≤maxnew |
Output Parameters
Parameter | Type | Constraint | Description | Remarks |
---|---|---|---|---|
ˆY | ˆY∈(minnew,maxnew)N1,(minnew,maxnew)N1×N2, or (minnew,maxnew)N1×N2×N3,… | N1,N2,N3∈N |
Single Steps using the Algorithm
References
- J. Han, M. Kamber and J. Pei, Data Mining - Concepts and Techniques, 3rd ed., Amsterdam: Morgan Kaufmann Publishers, 2012.