Min-Max ScalingΒΆ
Global Algorithm - Multi-Dimensional algorithm
The basic formula of Min-Max Scaling algorithm is stated as follows:
\[\hat{Y}_i = \frac{Y_i - min(Y)}{max(Y)-min(Y)} \cdot (\text{max}^{\text{new}} - \text{min}^{\text{new}}) + \text{min}^{\text{new}}\]
for a one-dimensional data vector,
\[\hat{Y}_{i,j} = \frac{Y_{i,j} - min(Y)}{max(Y)-min(Y)} \cdot (\text{max}^{\text{new}} - \text{min}^{\text{new}}) + \text{min}^{\text{new}}\]
for a two-dimensional data matrix, and
\[\hat{Y}_{i,j,k} = \frac{Y_{i,j,k} - min(Y)}{max(Y)-min(Y)} \cdot (\text{max}^{\text{new}} - \text{min}^{\text{new}}) + \text{min}^{\text{new}}\]
for a three-dimensional data matrix, where \(Y\) represents the input data and \(i, j, k\) represent the corresponding indices for the data entry considered.
Input Parameters
Parameter | Type | Constraint | Description | Remarks |
---|---|---|---|---|
\(Y\) | \(Y \in \mathbb R^{N_1}, \mathbb R^{N_1 \times N_2}, \text{ or } \mathbb R^{N_1 \times N_2 \times N_3}, \ldots\) | \(N_1, N_2, N_3 \in \mathbb{N}\) | ||
\(\text{min}^{\text{new}}\) | \(\text{min}^{\text{new}} \in \mathbb R\) | \(\text{min}^{\text{new}} \leq \text{max}^{\text{new}}\) | ||
\(\text{max}^{\text{new}}\) | \(\text{max}^{\text{new}} \in \mathbb R\) | \(\text{min}^{\text{new}} \leq \text{max}^{\text{new}}\) |
Output Parameters
Parameter | Type | Constraint | Description | Remarks |
---|---|---|---|---|
\(\hat{Y}\) | \(\hat{Y} \in (\text{min}^{\text{new}}, \text{max}^{\text{new}})^{N_1}, (\text{min}^{\text{new}}, \text{max}^{\text{new}})^{N_1 \times N_2}, \text{ or } (\text{min}^{\text{new}}, \text{max}^{\text{new}})^{N_1 \times N_2 \times N_3}, \ldots\) | \(N_1, N_2, N_3 \in \mathbb{N}\) |
Single Steps using the Algorithm
References
- J. Han, M. Kamber and J. Pei, Data Mining - Concepts and Techniques, 3rd ed., Amsterdam: Morgan Kaufmann Publishers, 2012.