Min-Max Scaling

Global Algorithm - Multi-Dimensional algorithm

The basic formula of Min-Max Scaling algorithm is stated as follows:

ˆYi=Yimin(Y)max(Y)min(Y)(maxnewminnew)+minnew

for a one-dimensional data vector,

ˆYi,j=Yi,jmin(Y)max(Y)min(Y)(maxnewminnew)+minnew

for a two-dimensional data matrix, and

ˆYi,j,k=Yi,j,kmin(Y)max(Y)min(Y)(maxnewminnew)+minnew

for a three-dimensional data matrix, where Y represents the input data and i,j,k represent the corresponding indices for the data entry considered.

Input Parameters

Parameter Type Constraint Description Remarks
Y YRN1,RN1×N2, or RN1×N2×N3, N1,N2,N3N    
minnew minnewR minnewmaxnew    
maxnew maxnewR minnewmaxnew    

Output Parameters

Parameter Type Constraint Description Remarks
ˆY ˆY(minnew,maxnew)N1,(minnew,maxnew)N1×N2, or (minnew,maxnew)N1×N2×N3, N1,N2,N3N    

Single Steps using the Algorithm

References

  • J. Han, M. Kamber and J. Pei, Data Mining - Concepts and Techniques, 3rd ed., Amsterdam: Morgan Kaufmann Publishers, 2012.