Maximum LikelihoodΒΆ
Global Algorithm - One-Dimensional Algorithm
Maximum Likelihood algorithm decides whether a value is a value outside the region of interest based on that value’s distance from the estimated mean distribution. Generally, if
\[|Y_i - \mu| > 3 \cdot \sigma \, \text{,}\]
the data point is considered outside the region of interest. \(\mu\) is the mean distribution, \(Y_i\) is \(i\)th element of \(Y\) and \(\sigma\) denotes the standard deviation. Note that \(\mu \pm 3\sigma\) contains \(99.7%\) data under the assumption of normal distribution.
Input Parameters
Parameter | Type | Constraint | Description | Remarks |
---|---|---|---|---|
\(Y\) | \(Y \in \mathbb R^N\) | \(N \in \mathbb{N}\) | Input data sequence of length \(N\) | |
\(\mu\) | \(\mu \in \mathbb{R}\) | Mean distribution of \(Y\) | ||
\(\sigma\) | \(\sigma\in \mathbb{R}\) | Standard deviation of \(Y\) |
Output Parameters
Parameter | Type | Constraint | Description | Remarks |
---|---|---|---|---|
\(\hat{Y}\) | \(\hat{Y} \in \mathbb R^N\) | Values in the \(Y\) list which are outside the region of interest are marked |
Tool Support
Single Steps using the Algorithm
References
- J. Han, M. Kamber and J. Pei, Data Mining - Concepts and Techniques, 3rd ed., Amsterdam: Morgan Kaufmann Publishers, 2012.