Single Exponential Smoothing¶
Local Algorithm - One-Dimensional Algorithm
Single Exponential Smoothing algorithm uses a parameter α to establish an exponentially decreasing weighting factor for time series data. When α is equal to one, there is no smoothing, and when α is equal to zero, a constant time series is returned. The basic formulas are stated as follows:
(1)s1=Y0,
(2)st=α(Yt−1−st−1)+st−1,t>1,
(3)ˆYt=st,
where Y is the data sequence beginning at time t=0 and ˆYt is the smoothed forecast for time t. This function is exponential through the nesting of the function at each subsequent data value.
Input Parameters
Parameter | Type | Constraint | Description | Remarks |
---|---|---|---|---|
Y | Y∈RN | N∈N | Input data sequence of length N | |
α | α∈R | 0≤α≤1 |
Output Parameters
Parameter | Type | Constraint | Description | Remarks |
---|---|---|---|---|
ˆY | ˆY∈RN |
Tool Support
-
For details refer to the online documentation of the function ‘smoothts’.
Single Steps using the Algorithm
References
- K.D. Kammeyer and K. Kroschel, Digitale Signalverarbeitung, 5th ed. Stuttgart: Teubner, 2002.