Single Exponential SmoothingΒΆ
Local Algorithm - One-Dimensional Algorithm
Single Exponential Smoothing algorithm uses a parameter \(\alpha\) to establish an exponentially decreasing weighting factor for time series data. When \(\alpha\) is equal to one, there is no smoothing, and when \(\alpha\) is equal to zero, a constant time series is returned. The basic formulas are stated as follows:
where \(Y\) is the data sequence beginning at time \(t = 0\) and \(\hat{Y}_{t}\) is the smoothed forecast for time \(t\). This function is exponential through the nesting of the function at each subsequent data value.
Input Parameters
Parameter | Type | Constraint | Description | Remarks |
---|---|---|---|---|
\(Y\) | \(Y \in \mathbb R^N\) | \(N \in \mathbb{N}\) | Input data sequence of length \(N\) | |
\(\alpha\) | \(\alpha \in \mathbb R\) | \(0 \leq \alpha \leq 1\) |
Output Parameters
Parameter | Type | Constraint | Description | Remarks |
---|---|---|---|---|
\(\hat{Y}\) | \(\hat{Y} \in \mathbb R^N\) |
Tool Support
-
For details refer to the online documentation of the function ‘smoothts’.
Single Steps using the Algorithm
References
- K.D. Kammeyer and K. Kroschel, Digitale Signalverarbeitung, 5th ed. Stuttgart: Teubner, 2002.