Linear Regression

Global Algorithm - One-Dimensional Algorithm

Linear Regression algorithm aims to find parameters p0 and p1 for a line, y=p0+p1t, that best fits N data points. The task is equivalent to solve systems of linear equations

Ap=[1t11t21tN][p0p1]=[y1y2yN]=Y.

The method of least squares is the most common method for finding the fitted parameters. If A is of full column rank, the least squares solution is

p=(ATA)1ATY

Input Parameters

Parameter Type Constraint Description Remarks
[ti] [ti]RN NN    
Y YRN NN Input data vector of length N  

Output Parameters

Parameter Type Constraint Description Remarks
p pR2      
ˆY ˆYRN NN Output data vector of length N  

Tool Support

Single Steps using the Algorithm

References

  • C.R. Rao, H. Toutenburg, A. Fieger, C. Heumann, T. Nittner and S. Scheid, Linear Models: Least Squares and Alternatives, Springer Series in Statistics, pp. 23-33, 1999.
  • R.C. Aster, B. Borchers, C.H. Thurber, Parameter Estimation and Inverse Problems, Academic Press, 2005.